Analyzing the Modification of the Shewanella oneidensis MR-1 Flagellar Filament

نویسندگان

  • Sebastian Bubendorfer
  • Mayumi Ishihara
  • Kim Dohlich
  • Christian Heiss
  • Jan Vogel
  • Federico Sastre
  • Maria Panico
  • Paul Hitchen
  • Anne Dell
  • Parastoo Azadi
  • Kai M. Thormann
چکیده

The unsheathed flagellar filament of Shewanella oneidensis MR-1 is composed of two highly homologous flagellins, FlaA, and the major structural unit, FlaB. We identified a gene cluster, SO_3261-SO_3265 (now sfmABCDE), that is required for the formation of a fully functional filament and for motility. The predicted function of the corresponding gene products strongly indicated a role in flagellin modification. Accordingly, loss of sfmABCDE results in a significant mass shift of both FlaA and FlaB. Mass spectroscopy analysis and single residue substitutions identified five serine residues in both flagellins that are modified via O-linkage. Modeling of the flagellin structures strongly suggests that at least four of the modified residues are exposed to the filament's surface. However, none of the five serine residues solely is crucial for function and assembly. Structural analysis of the flagellin modification revealed that it likely contains a nonulosonic acid (274 Da) linked to each glycosylated serine. The putative nonulosonic acid is further substituted with a 236 Da moiety which can carry additional methyl groups (250 Da, 264 Da). In addition, at least 5 lysine residues in FlaB and one in FlaA were found to be methylated. Based on homology comparisons we suggest that smfABCDE is required for species-specific flagellin modification in S. oneidensis MR-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual stator dynamics in the Shewanella oneidensis MR-1 flagellar motor.

The bacterial flagellar motor is an intricate nanomachine which converts ion gradients into rotational movement. Torque is created by ion-dependent stator complexes which surround the rotor in a ring. Shewanella oneidensis MR-1 expresses two distinct types of stator units: the Na(+)-dependent PomA4 B2 and the H(+)-dependent MotA4 B2. Here, we have explored the stator unit dynamics in the MR-1 f...

متن کامل

Deciphering the electron transport pathway for graphene oxide reduction by Shewanella oneidensis MR-1.

We determined that graphene oxide reduction by Shewanella oneidensis MR-1 requires the Mtr respiratory pathway by analyzing a range of mutants lacking these proteins. Electron shuttling compounds increased the graphene oxide reduction rate 3- to 5-fold. These results may help facilitate the use of bacteria for large-scale graphene production.

متن کامل

Genetic and Molecular Characterization of Flagellar Assembly in Shewanella oneidensis

Shewanella oneidensis is a highly motile organism by virtue of a polar flagellum. Unlike most flagellated bacteria, it contains only one major chromosome segment encoding the components of the flagellum with the exception of the motor proteins. In this region, three genes encode flagellinsaccording to the original genome annotation. However, we find that only flaA and flaB encode functional fil...

متن کامل

Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants.

Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several diffe...

متن کامل

Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1.

We performed whole-genome analyses of DNA methylation in Shewanella oneidensis MR-1 to examine its possible role in regulating gene expression and other cellular processes. Single-molecule real-time (SMRT) sequencing revealed extensive methylation of adenine (N6mA) throughout the genome. These methylated bases were located in five sequence motifs, including three novel targets for type I restri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013